Answer : The correct option is, (b) 202 g
Explanation :
The given set of balanced reactions are:
[tex](1):SO_2(g)+Cl_2\rightarrow SO_2Cl_2(g)\\\\(2):SO_2Cl_2(g)+2H_2O(l)\rightarrow H_2SO_4(l)+2HCl(l)\\\\(3):H_2SO_4(l)+Ca(OH)_2(s)\rightarrow CaSO_4(s)+2H_2O(l)[/tex]
First we have to calculate the moles of [tex]SO_2[/tex].
[tex]\text{ Moles of }SO_2=\frac{\text{ Mass of }SO_2}{\text{ Molar mass of }SO_2}=\frac{100g}{64.1g/mole}=1.56moles[/tex]
Now we have to calculate the moles of [tex]CaSO_4[/tex].
From the given set of balanced reactions we conclude that,
As, the mole ratio of [tex]SO_2:SO_2Cl_2:H_2SO_4:CaSO_4[/tex] is, 1 : 1 : 1 : 1
So, the moles of [tex]CaSO_4[/tex] = moles of [tex]SO_2[/tex] = 1.56 moles
Now we have to calculate the mass of [tex]CaSO_4[/tex].
[tex]\text{ Mass of }CaSO_4=\text{ Moles of }CaSO_4\times \text{ Molar mass of }CaSO_4[/tex]
[tex]\text{ Mass of }CaSO_4=(1.56moles)\times (136g/mole)=212.16g[/tex]
As we are given that the process is 95.0 % efficient that means the amount we calculated is recovered.
Mass of [tex]CaSO_4[/tex] = [tex]212.16g\times 95\%=212.16g\times \frac{95}{100}=201.55g\approx 202g[/tex]
Therefore, the mass of [tex]CaSO_4[/tex] produced is 202 grams.