At one instant a bicyclist is 25 m due east of a park's flagpole, going due south with a speed of 9 m/s. Then, 27 s later, the cyclist is 60 m due north of the flagpole, going due east with a speed of 13 m/s. For the cyclist in this 27 s interval, find each of the following. (a) displacement magnitude 1 m direction 2 ° north of west (b) average velocity magnitude 3 m/s direction 4 ° north of west (c) average acceleration magnitude 5 m/s2 direction 6 ° north of east.

Respuesta :

Answer:

Explanation:

Given

[tex]\vec{r_1}=25\hat{i}[/tex]

[tex]\vec{v_1}=-9\hat{j} m/s[/tex]

after 27 s

[tex]\vec{r_2}=60\hat{j}[/tex]

[tex]\vec{v_2}=13\hat{i}[/tex]

Displacement[tex]=\vec{r_2}-\vec{r_1}[/tex]

[tex]=60\hat{j}-25\hat{i}[/tex]

(b)[tex]v_{avg}=\frac{Diplacement}{time}[/tex]

[tex]v_{avg}=\frac{60\hat{j}-25\hat{i}}{27}[/tex]

Magnitude of v_{avg}[/tex]

[tex]|v_{avg}|=\sqrt{\left ( \frac{25}{27}\right )^2+\left ( \frac{60}{27}\right )^2}[/tex]

[tex]|v_{avg}|=2.407 m/s[/tex]

direction

[tex]tan\theta =\frac{60}{25}=2.4[/tex]

[tex]\theta =67.38^{\circ}[/tex] North of west

(c)Average acceleration

[tex]a_{avg}=\frac{Change in velocity}{time}[/tex]

[tex]a_{avg}=\frac{13\hat{i}+9\hat{j}}{27}[/tex]

[tex]a_{avg} is\ magnitude\ of\ |a_{avg}|[/tex]

[tex]|a_{avg}|=\sqrt{\left ( \frac{13}{27}\right )^2+\left ( \frac{9}{27}\right )^2}[/tex]

[tex]|a_{avg}|=0.58 m/s^2[/tex]