Answer:
Explanation:
Given
[tex]\vec{r_1}=25\hat{i}[/tex]
[tex]\vec{v_1}=-9\hat{j} m/s[/tex]
after 27 s
[tex]\vec{r_2}=60\hat{j}[/tex]
[tex]\vec{v_2}=13\hat{i}[/tex]
Displacement[tex]=\vec{r_2}-\vec{r_1}[/tex]
[tex]=60\hat{j}-25\hat{i}[/tex]
(b)[tex]v_{avg}=\frac{Diplacement}{time}[/tex]
[tex]v_{avg}=\frac{60\hat{j}-25\hat{i}}{27}[/tex]
Magnitude of v_{avg}[/tex]
[tex]|v_{avg}|=\sqrt{\left ( \frac{25}{27}\right )^2+\left ( \frac{60}{27}\right )^2}[/tex]
[tex]|v_{avg}|=2.407 m/s[/tex]
direction
[tex]tan\theta =\frac{60}{25}=2.4[/tex]
[tex]\theta =67.38^{\circ}[/tex] North of west
(c)Average acceleration
[tex]a_{avg}=\frac{Change in velocity}{time}[/tex]
[tex]a_{avg}=\frac{13\hat{i}+9\hat{j}}{27}[/tex]
[tex]a_{avg} is\ magnitude\ of\ |a_{avg}|[/tex]
[tex]|a_{avg}|=\sqrt{\left ( \frac{13}{27}\right )^2+\left ( \frac{9}{27}\right )^2}[/tex]
[tex]|a_{avg}|=0.58 m/s^2[/tex]