A dockworker applies a constant horizontal force of 72.0 N to a block of ice on a smooth horizontal floor. The frictional force is negligible. The block starts from rest and moves a distance 12.5 m in a time of 4.50 s . (a)What is the mass of the block of ice? (b)If the worker stops pushing at the end of 4.50 s, how far does the block move in the next 4.20s ?

Respuesta :

Answer:

58.54 kg

23.247 m

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

m = Mass

a) Equation of motion

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 12.5=0\times 4.5+\frac{1}{2}\times a\times 4.5^2\\\Rightarrow a=\frac{12.5\times 2}{4.5^2}\\\Rightarrow a=1.23\ m/s^2[/tex]

Force

F = ma

[tex]m=\frac{F}{a}\\\Rightarrow m=\frac{72}{1.23}\\\Rightarrow m=58.54\ kg[/tex]

Mass of block is 58.54 kg

b)

[tex]v=u+at\\\Rightarrow v=0+1.23\times 4.5\\\Rightarrow v=5.535\ m/s[/tex]

If this velocity is constant then

Distance = Speed × Time

[tex]\text{Distance}=5.535\times 4.2\\\Rightarrow \text{Distance}=23.247\ m[/tex]

Distance the block move in the next 4.20 s is 23.247 m