Answer:
The maximum speed vmax = 0.727 m/s
Explanation
Given that
Distance ,r= 12 cm
Coefficient of static friction , μ= 0.45
Lets the mass of cylinder is m.
The friction force on the cylinder Fr = μ m g
Force due to rotation F
[tex]F=mv^2/r[/tex]
v= Speed of rotation
The condition for no slipping
Fr= F
[tex]\mu mg=mv^2/r[/tex]
[tex]v=\sqrt{\mu rg}[/tex]
Now by pitting the values
[tex]v=\sqrt{0.45\times 0.12\times 9.81}\ m/s[/tex]
v=0.727 m/s
So
The maximum speed vmax = 0.727 m/s