Respuesta :

frika

Answer:

[tex]\dfrac{y}{x}\text{ for point }A=\dfrac{y}{x}\text{ for point B }[/tex]

Step-by-step explanation:

From the graph, you can see that both points A and B lie on the same straight line given by equation

[tex]y=\dfrac{3}{4}x[/tex]

Now, if point with coordinates (x,y) lies on the line, then its coordinates satisfy the equation.

So, for point [tex]A(x_A,y_A):[/tex]

[tex]\dfrac{y_A}{x_A}=\dfrac{3}{4}[/tex]

for point [tex]B(x_B,y_B):[/tex]

[tex]\dfrac{y_B}{x_B}=\dfrac{3}{4}[/tex]

This means the first statement

[tex]\dfrac{y}{x}\text{ for point }A=\dfrac{y}{x}\text{ for point B }[/tex]

is true

Answer:

Option A)

[tex]\displaystyle\frac{y}{x}\text{ of point B} = \frac{y}{x} \text{ of poinrt A}[/tex]

Step-by-step explanation:

We are given the following in the question:

Point A and B lies on the line with the equation:

[tex]y =\displaystyle\frac{3}{4}x[/tex]

Let [tex](x_1,y_1)[/tex] be the coordinates of A and let [tex](x_2,y_2)[/tex] be the coordinates of point B, then, these points satisfy the equation of the given line.

Thus, we can write:

[tex]y_1 =\displaystyle\frac{3}{4}x_1\\\\\frac{y_1}{x_1}=\frac{3}{4}[/tex]

\[tex]y_2 =\displaystyle\frac{3}{4}x_2\\\\\frac{y_2}{x_2}=\frac{3}{4}[/tex]

Thus, we can write,

[tex]\displaystyle\frac{y_1}{x_1} = \frac{y_2}{x_2} = \frac{3}{4}[/tex]

Thus, from the given statements, the true statement is

[tex]\displaystyle\frac{y}{x}\text{ of point B} = \frac{y}{x} \text{ of poinrt A}[/tex]