Which statement is true about the coordinates of points A and B?

Answer:
[tex]\dfrac{y}{x}\text{ for point }A=\dfrac{y}{x}\text{ for point B }[/tex]
Step-by-step explanation:
From the graph, you can see that both points A and B lie on the same straight line given by equation
[tex]y=\dfrac{3}{4}x[/tex]
Now, if point with coordinates (x,y) lies on the line, then its coordinates satisfy the equation.
So, for point [tex]A(x_A,y_A):[/tex]
[tex]\dfrac{y_A}{x_A}=\dfrac{3}{4}[/tex]
for point [tex]B(x_B,y_B):[/tex]
[tex]\dfrac{y_B}{x_B}=\dfrac{3}{4}[/tex]
This means the first statement
[tex]\dfrac{y}{x}\text{ for point }A=\dfrac{y}{x}\text{ for point B }[/tex]
is true
Answer:
Option A)
[tex]\displaystyle\frac{y}{x}\text{ of point B} = \frac{y}{x} \text{ of poinrt A}[/tex]
Step-by-step explanation:
We are given the following in the question:
Point A and B lies on the line with the equation:
[tex]y =\displaystyle\frac{3}{4}x[/tex]
Let [tex](x_1,y_1)[/tex] be the coordinates of A and let [tex](x_2,y_2)[/tex] be the coordinates of point B, then, these points satisfy the equation of the given line.
Thus, we can write:
[tex]y_1 =\displaystyle\frac{3}{4}x_1\\\\\frac{y_1}{x_1}=\frac{3}{4}[/tex]
\[tex]y_2 =\displaystyle\frac{3}{4}x_2\\\\\frac{y_2}{x_2}=\frac{3}{4}[/tex]
Thus, we can write,
[tex]\displaystyle\frac{y_1}{x_1} = \frac{y_2}{x_2} = \frac{3}{4}[/tex]
Thus, from the given statements, the true statement is
[tex]\displaystyle\frac{y}{x}\text{ of point B} = \frac{y}{x} \text{ of poinrt A}[/tex]