Respuesta :
Answer:
a.0.32636.
b.0.00226
Explanation:
We are given that
Mean=[tex]\mu=102 [/tex]
Standard deviation=[tex]\sigma=0.6 [/tex]
a.We have to find the probability that a randomly selected board cut by the machine has a length greater than 102.27 in.
[tex]x=102.27 [/tex]
It means we have to find P(x > 102.27)
[tex]z=\frac{x-\mu}{\sigma}=\frac{102.27-102}{0.6}=0.45[/tex]
[tex]P(x > 102.27)=P(z > 0.45)=1-P(z < 0.45)=1-0.67364=0.32636[/tex]
Hence, the probability that a board cut by the machine has a length greater than 102.27 in=0.32636.
b.n=37
We have to find the probability that their mean length is greater than 102.27 in.
[tex]\bar x=102.27[/tex]
We have to find [tex]P(\bar x > 102.27)[/tex]
Now, z score=[tex]\frac{\bar x-\mu}{\frac{\sigma}{\sqrtn}}=\frac{102.27-102}{\frac{0.6}{6.32}}=\frac{0.27\times 6.32}{0.6}=2.84[/tex]
[tex]P(\bar x > 102.27)=P(z > 2.84)=1-P(z <2.84)=1-0.99774=0.00226[/tex]
Hence, the probability that their mean is greater than 102.27 in=0.00226
Using the Zscore relation, the probability that a randomly selected board is greater than 102.27 in both scenarios are :
- 0.3264
- 0.0031
1.)
Given the Parameters :
- Mean, μ = 102 inches
- Standard deviation, σ = 0.6 inches
- Score, X > 102.27 inches
Zscore = (X - mean) ÷ standard deviation
P( X > 102.27) = [tex] 1 - P(Z < (\frac{102.27 - 102}{0.6}))[/tex]
P( X > 102.27) = [tex] 1 - P(Z < 0.45)[/tex]
Using a normal distribution table ;
P( X > 102.27) = [tex] 1 - 0.67364[/tex]
P( X > 102.27) = [tex] 0.3264[/tex]
2.)
Given the Parameters :
- Mean, μ = 102 inches
- Standard deviation, σ = 0.6 inches
- Score, X > 102.27 inches
- Sample size, n = 37
Zscore = (X - μ) ÷ (σ/√n)
P( X > 102.27) = [tex] 1 - P(Z < (\frac{102.27 - 102}{\frac{0.6}{\sqrt 37}}))[/tex]
P( X > 102.27) = [tex] 1 - P(Z < 2.737)[/tex]
Using a normal distribution table ;
P( X > 102.27) = [tex] 1 - 0.9969[/tex]
P( X > 102.27) = [tex] 0.00310[/tex]
Therefore, the solution to questions 1 and 2 are 0.3264 and 0.00310 respectively.
Learn more : https://brainly.com/question/8165716