contestada

A nonconducting sphere has radius R = 2.81 cm and uniformly distributed charge q = +2.35 fC. Take the electric potential at the sphere's center to be V0 = 0. What is V at radial distance from the center (a) r = 1.60 cm and (b) r = R? (Hint: See an expression for the electric field.)

Respuesta :

Answer:

(a). The electric potential at 1.650 cm is [tex]-1.219\times10^{-4}\ V[/tex].

(b). The electric potential at 2.81 cm is [tex]-3.759\times10^{-4}\ V[/tex].

Explanation:

Given that,

Radius of sphere R=2.81 cm

Charge = +2.35 fC

Potential at center of sphere

[tex]V = 0[/tex]

(a). We need to calculate the potential at a distance r = 1.60 cm

Using formula of potential difference

[tex]V_(r)-V_(0)=-\int_{0}^{r}{E(r)}dr[/tex]

[tex]V_{r}-0=-\int_{0}^{r}{\dfrac{qr}{4\pi\epsilon_{0}R^3}}dr[/tex]

[tex]V_{r}=-(\dfrac{qr^2}{8\pi\epsilon_{0}R^3})_{0}^{1.60\times10^{-2}}[/tex]

[tex]V_{r}=-(\dfrac{2.35\times10^{-15}\times(1.60\times10^{-2})^2}{8\times\pi\times8.85\times10^{-12}\times(2.81\times10^{-2})^3})[/tex]

[tex]V_{r}=-0.00012190\ V[/tex]

[tex]V_{r}=-1.219\times10^{-4}\ V[/tex]

The electric potential at 1.650 cm is [tex]-1.219\times10^{-4}\ V[/tex].

(b). We need to calculate the potential at a distance r = R

Using formula of  potential difference

[tex]V_{R}=-\dfrac{2.35\times10^{-15}}{8\pi\times8.85\times10^{-12}\times2.81\times10^{-2}}[/tex]

[tex]V_{R}=-0.0003759\ V[/tex]

[tex]V_{R}=-3.759\times10^{-4}\ V[/tex]

The electric potential at 2.81 cm is [tex]-3.759\times10^{-4}\ V[/tex].

Hence, This is the required solution.