Consider a Rankine cycle, where steam enters the turbine @ 5 Mpa, 500 °C and exits at 12.35 kPa. The cycle produce 10,000 KW of electricity. Determine the cycle efficiency and the steam amount needed. (in)

Respuesta :

Answer:

cycle efficiency: 0.11

steam amount needed: 8.327  kg/s

Explanation:

Points 1,2,3 and 4 are depicted in first figure attached. h means enthalpy and s means entropy .

Assumption [tex]s_2 = s_1 [/tex]

Interpolation to get [tex]h_1[/tex] (see second figure)

p (MPa) h (kJ/kg)

4         3445.3  

5         [tex]h_1[/tex]

6         3422.2

(3445.3 - 3422.2)/(4 - 6) = (3445.3 - [tex]h_1[/tex])/(4 - 5)

[tex]h_1 = 3433.75 \; kJ/kg[/tex]  

In a similar way [tex]s_1[/tex] is computed as 6.9852 kJ/(kg K)

At 12.35 kPa, i. e., 0.1235 bar (see third figure): [tex]s_f[/tex] = 0.6922; [tex]s_g[/tex] = 8.093; [tex]h_f[/tex] = 205.82 ; [tex]h_g[/tex] = 2590.575 (again from interpolation, units omitted)

Quality (x) = [tex]\frac{s_2 - s_f}{s_g - s_f} = 0.85[/tex]

Enthalpy = [tex]h_2 = (h_g - h_f)*x + h_f = 2232.86[/tex]

In a similar way [tex]h_3[/tex] is computed as 205.83 kJ/kg.

Point 4 is computed as saturated liquid at 5 MPa; then, [tex]h_4[/tex] = 1154.2 kJ/kg (see fourth figure).  

Efficiency is calculated as

[tex]\eta = 1 - \frac{h_2 - h_3}{h_1 - h_4}[/tex]

[tex]\eta = 1 - \frac{2232.86 - 205.83}{3433.75 - 1154.2}[/tex]

[tex]\eta = 0.11[/tex]

Energy balance at turbine gives

[tex]\frac{\dot{W}}{\dot{m}} = h_1 - h_2[/tex]

[tex]\dot{m} = \frac{\dot{W}}{h_1 - h_2}[/tex]

[tex]\dot{m} = \frac{10,000 \; KW}{3433.75 \; kJ/kg - 2232.86 \; kJ/kg}[/tex]

[tex]\dot{m} = 8.327 \; kg/s [/tex]

Ver imagen jbiain
Ver imagen jbiain
Ver imagen jbiain
Ver imagen jbiain