how do you solve 27?

We have
[tex]\left(\dfrac{2}{3}\right)^x=\dfrac{2^x}{3^x}[/tex]
And we want
[tex]\dfrac{2^x}{3^x}=\dfrac{16}{81}=\dfrac{2^4}{3^4}[/tex]
Another way to read it is
[tex]\dfrac{16}{81}=\left(\dfrac{2}{3}\right)^4=\left(\dfrac{2}{3}\right)^x[/tex]
It should be clear that the solution is [tex]x=4[/tex]
Answer:
16 / 81 = 0.1975308642
2 / 3 = .6666666666666
.6666666666666^x = 0.1975308642
Taking logs of both sides:
x * log (.6666666666) = log (0.1975308642)
x = log (0.1975308642) / log (.6666666666)
x = -0.7043650362 / -0.1760912591
x = 4
Step-by-step explanation: