This extreme value problem has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint. f(x, y, z) = 10x + 10y + 3z; 5x2 + 5y2 + 3z2 = 43

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]f(x,y,z)=10x+10y+3z[/tex]

[tex]g(x,y,z)=5x^2+5y^2+3z^2=43[/tex]

We have to find the extreme values of the function.

[tex]f_x(x,y,z)=10,f_y(x,y,z)=10,f_z(x,y,z)=3[/tex]

[tex]g_x(x,y,z)=10x,g_y(x,y,z)=10y,g_z(x,y,z)=6z[/tex]

[tex]\Delta f(x,y,z)=\lambda \Delta g(x,y,z)[/tex]

Therefore,

[tex]10=\lambda 10x\implies x=\frac{1}{\lambda}[/tex]

[tex]10=10y\lambda\implies y=\frac{1}{\lambda}[/tex]

[tex]3=6z\lambda[/tex]

[tex]z=\frac{1}{2\lambda}[/tex]

Substitute the values in g(x)

Then, we get

[tex]\frac{5}{\lambda^2}+\frac{5}{\lambda^2}+\frac{3}{4\lambda^2}=43[/tex]

[tex]\frac{20+20+3}{4\lambda^2}=43[/tex]

[tex]\frac{43}{4\lambda^2}=43[/tex]

[tex]\lambda^2=\frac{43}{4\times 43}[/tex]

[tex]\lambda=\pm\frac{1}{2}[/tex]

When [tex]\lambda=\frac{1}{2}[/tex] then,

[tex]x=2,y=2,z=1[/tex]

When [tex]\lambda=-\frac{1}{2}[/tex]

Then, [tex]x=-2,y=-2,z=-1[/tex]

[tex]f(2,2,1)=10+10+3=23[/tex]

[tex]f(-2,-2,-1)=-10-10-3=-23[/tex]

Hence, maximum value of f(x,y,z) is 23 at (2,2,1) and minimum value of f(x,y,z) is -23 at (-2,-2 ,-1).