Respuesta :

Answer:

The answer to your question:  Perimeter = 62.19 m

Step-by-step explanation:

Data

DM = 10 √3

∠M = 75°

∠N = 45

Perimeter = ?

Process

The sum of the internal angles in a triangles equals 180°

                        ∠D + ∠M + ∠N = 180

                          ∠D = 75 + 45 = 180

                           ∠D = 180 - 120

                            ∠D = 60°

[tex]\frac{sin D}{D}  = \frac{sin M}{N} =   \frac{sin N}{N}[/tex]

[tex]\frac{sin 60}{D} = \frac{sin45}{10\sqrt{3} }[/tex]

D = [tex]\frac{10\sqrt{3}sin 60 }{sin 45}[/tex]

D = 21.21      

[tex]\frac{sin D}{D}  = \frac{sin 75}{M} =   \frac{sin 45}{10[tex]\sqrt{3}[/tex]}[/tex]

[tex]\frac{sin 75}{M} = \frac{sin45}{10\sqrt{3} }[/tex]

D = [tex]\frac{10\sqrt{3}sin 75 }{sin 45}[/tex]

D = 23.66

Perimeter = 21.21 + 23.66 + 10[tex]\sqrt{3}[/tex]

Perimeter = 62.19 m