12. Determine the shortest distance from the
point D(5, 4) to the line represented by
3x + 5y - 4 = 0.



I got my distance as the square root of 26890600/12027024
But I’m fairly certain that’s incorrect.

Respuesta :

gmany

Answer:

[tex]\large\boxed{d=\dfrac{31\sqrt{34}}{34}\approx5.32}[/tex]

Step-by-step explanation:

The formula of a distance between a point (x₀, y₀) and a line Ax + By + C = 0:

[tex]d=\dfrac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}[/tex]

We have the point D(5, 4) and the line 3x + 5y - 4 = 0.

Substitute:

[tex]x_0=5,\ y_0=4,\ A=3,\ B=5,\ C=-4[/tex]

[tex]d=\dfrac{|(3)(5)+(5)(4)-4|}{\sqrt{3^2+5^2}}=\dfrac{|15+20-4|}{\sqrt{9+25}}=\dfrac{|31|}{\sqrt{34}}\cdot\dfrac{\sqrt{34}}{\sqrt{34}}=\dfrac{31\sqrt{34}}{34}[/tex]