Respuesta :
Answer:
W'(x) = [tex]\frac{-240R^2}{h^3}[/tex]
Here, the negative sign depicts the loss in weight
Step-by-step explanation:
Data provided in the question :
Function:
W(x) = [tex]\frac{wR^2}{x^2}[/tex]
Here,
R = 3,960 miles is the radius of the earth
w = Weight of the pilot = 120 lb
x is the distance from the center of the earth
Therefore,
Rate of change of weight
W'(x) = [tex]\frac{d(\frac{wR^2}{x^2})}{dx}[/tex]
or
W'(x) = [tex]\frac{(-2)wR^2}{x^3}[/tex]
on substituting the respective values, we get
W'(x) = [tex]\frac{(-2)(120)R^2}{(h)^3}[/tex]
or
W'(x) = [tex]\frac{-240R^2}{h^3}[/tex]
Here, the negative sign depicts the loss in weight
Equations can be used to model real life situations.
The weight change at altitude h is: [tex]\mathbf{ -3763584000h^{-3}}[/tex]
The equation is given as:
[tex]\mathbf{W(x)=\frac{w R^{2}}{x^{2}} }[/tex]
Differentiate with respect to x
[tex]\mathbf{W'(x) = -\frac{2wR^2}{x^3}}[/tex]
From the question, we have:
[tex]\mathbf{R=3960\ miles}[/tex]
[tex]\mathbf{w =120-lb}[/tex]
[tex]\mathbf{x = h}[/tex]
So, we have:
[tex]\mathbf{W'(x) = -\frac{2 \times 120 \times 3960^2}{x^3}}[/tex]
[tex]\mathbf{W'(x) = -\frac{3763584000}{x^3}}[/tex]
Substitute h for x
[tex]\mathbf{W'(h) = -\frac{3763584000}{h^3}}[/tex]
Rewrite as:
[tex]\mathbf{W'(h) = -3763584000h^{-3}}[/tex]
Hence, the weight change at altitude h is: [tex]\mathbf{ -3763584000h^{-3}}[/tex]
Read more about rate of change at:
https://brainly.com/question/12786410