Answer:
t = 28379.5 years
Explanation:
To find when did the mammoth live, we need to use the exponential decay equation:
[tex]\frac{N_{t}}{N_{0}}= \frac{1}{2}^ \frac{t}{t_{1/2}}[/tex]
where, N(t)/N(0): ratio decay rate, t: time to find, t(1/2): half-life
[tex]\frac{0.49}{15.3} = \frac{1}{2}^ \frac{t}{5715}[/tex]
[tex]Log(0.032) = \frac{t}{5715} \cdot Log(0.5)[/tex]
[tex]t= \frac {5715 \cdot Log(0.032)}{Log(0.5)}[/tex]
[tex]t= 28379.5 years [/tex]
Have a nice day!