Respuesta :

Answer:

(i) p = -7, q = -3

(ii) (-3/2, 0), (2, 0), (3, 0)

Step-by-step explanation:

Use long division (see picture).

When we divide by x − 1, we get a remainder of q + p + 20.

When we divide by x + 1, we get a remainder of 16 − q + p.

We know the first remainder is equal to 10 and the second remainder is equal to 12.  Solving the system of equations:

10 = q + p + 20

12 = 16 − q + p

0 = q + p + 10

0 = 4 − q + p

0 = 14 + 2p

p = -7

q = -3

Therefore:

f(x) = 2x³ − 7x² − 3x + 18

Finding the zeros:

f(x) = 2x³ − 6x² − x² − 3x + 18

f(x) = 2x² (x − 3) − (x² + 3x − 18)

f(x) = 2x² (x − 3) − (x − 3) (x + 6)

f(x) = (x − 3) (2x² − (x + 6))

f(x) = (x − 3) (2x² − x − 6)

f(x) = (x − 3) (x − 2) (2x + 3)

The zeros are at x = -3/2, x = 2, and x = 3.

Ver imagen MathPhys