contestada

find the time taken, if the speed of a train increased from 72 km/hr to 90 km/hr for 234 km. leave your answer in seconds

Respuesta :

Answer:

Time taken = 10400 s

Explanation:

Given:

Initial speed of the train, [tex]u=72\textrm{ km/h}=72\times \frac{5}{18}=20\textrm{ m/s}[/tex]

Final speed of the train, [tex]v=90\textrm{ km/h}=90\times \frac{5}{18}=25\textrm{ m/s}[/tex]

Displacement of the train, [tex]S=234\textrm{ km}=234\times 1000=234000\textrm{ m}[/tex]

Using Newton's equation of motion,

[tex] v - u = at\\a=\frac{v-u}{t}[/tex]

Now, using Newton's equation of motion for displacement,

[tex]v^{2}-u^{2}=2aS[/tex]

Now, plug in the value of [tex]a=\frac{v-u}{t}[/tex] in the above equation. This gives,

[tex]v^{2}-u^{2}=2\times \frac{v-u}{t}\times S\\(v+u)(v-u)=\frac{2(v-u)S}{t}\\t=\frac{2(v-u)S}{(v+u)(v-u)}\\t=\frac{2S}{v+u}[/tex]

Now, plug in 234000 m for [tex]S[/tex], 25 m/s for [tex]v[/tex] and 20 m/s for [tex]u[/tex]. Solve for [tex]t[/tex].

[tex]t=\frac{2S}{v+u}\\t=\frac{2\times 234000}{25+20}\\t=\frac{468000}{45}=10400\textrm{ s}[/tex]

Therefore, the time taken by the train is 10400 s.