The hypotenuse of right triangle is 122 meters long. The difference between the other two sides is 98 meters. Find the missing sides. Use exact values.

Respuesta :

Answer:

The length of the Base = 22 meters

Length of the perpendicular is = 120 meters

Step-by-step explanation:

The length of the hypotenuse =  122 m

Let base side of the triangle = k meters

So, the perpendicular  side of the triangle is  =  98 + k

Now, by PYTHAGORAS THEOREM , in a right angled triangle:

[tex](BASE)^{2} + (PERPENDICULAR) ^{2}  =  (HYPOTENUSE)^{2}[/tex]

Here, [tex](k)^{2}   + ( k+ 98)^2  =( 122)^2[/tex]

Also, by Algebraic Identity: [tex](a+b)^{2}   = a^{2} + b ^{2} + 2ab  \implies (k+98)^{2}   = k^{2} + (98) ^{2} + 2k(98)[/tex]

or,  [tex](k)^{2}   +  k^{2} + (98) ^{2} + 2k(98)  =( 122)^2[/tex]

or, [tex]2k^{2}  + 9604 + 196k = 14884\\\implies  k^{2} + 98k -2640 = 0[/tex]

Solving the equation: [tex]k^{2} +120k - 22k - 2640 = 0 \implies k(k+120)-22(k+120) = 0[/tex]

(k+120)(k-22) = 0  , or (k+120) = 0 , or (k-22) = 0

or, either  k = -120 , or k = 22

As k is the length of the side, so k ≠  - 120

Hence, the length of the base = k = 22 meters

and the length of the perpendicular is k + 98 = 120 meters