Respuesta :
The length of rectangle is 41 inches and width is 31 inches
Step-by-step explanation:
Let W be the Width of rectangle
Then
According to "the length is 10 inches longer than its width"
L = W+10
Then according to formula of perimeter
[tex]2L+2W=144\\2(W+10)+2W=144\\2W+20+2W=144\\4W+20=144\\Subtracting\ 20\ from\ both\ sides\\4W+20-20=144-20\\4W=124\\Dividing\ both\ sides\ by\ 4\\\frac{4W}{4}=\frac{124}{4}\\W=31\ inches\\L=W+10 = 31+10 = 41\ inches[/tex]
The length of rectangle is 41 inches and width is 31 inches
Keywords: Perimeter, Linear Equations
Learn more about rectangles at:
- brainly.com/question/5424148
- brainly.com/question/5461619
#LearnwithBrainly
Answer:
[tex]18in[/tex] x [tex]8 in[/tex]
Step-by-step explanation:
The area of a rectangle is:
[tex]Area=width*length[/tex]
i will call the width [tex]x[/tex]
[tex]width=x[/tex]
and since the length is 10 inches longer than the width :
[tex]length=x+10[/tex]
thus, the area is
[tex]Area =x(x+10)[/tex]
[tex]Area=x^2+10x[/tex]
an the area according to the problem is equal to [tex]144in^2[/tex], so:
[tex]144=x^2+10x\\0=x^2+10x-144[/tex]
Factoring the expression:
[tex](x+18)(x-8)=0\\[/tex]
clearing for [tex]x[/tex]:
[tex]x+18=0 --> x=-18[/tex]
and
[tex]x-8=0-->x=8[/tex]
since we are talking about sides of a rectangle we can ignore the negative sign in -18, and the dimensions of the rectangle are:
[tex]18in[/tex] x [tex]8 in[/tex]
which when multiplied give the [tex]144 in^2[/tex] of area.