Respuesta :

Answer:

y = 3 · 2ˣ

Step-by-step explanation:

Exponential function is:

y = abˣ

Plug in the points:

⅜ = ab⁻³

12 = ab²

Solve the system of equations.  Start by dividing the second equation by the first:

12 / ⅜ = (ab²) / (ab⁻³)

32 = b⁵

b = 2

Plug into either equation to find a:

a = 3

Therefore:

y = 3 · 2ˣ

An exponential function passing through the given points is required.

The equation is [tex]y=3(2)^x[/tex]

The points are [tex](-3,3/8)[/tex] and [tex](2,12)[/tex]

The exponential equation is of the form

[tex]y=ab^x[/tex]

The equations will be

[tex]\dfrac{3}{8}=ab^{-3}[/tex]

[tex]12=ab^{2}[/tex]

Dividing the equations

[tex]\dfrac{\dfrac{3}{8}}{12}=\dfrac{b^{-3}}{b^2}\\\Rightarrow \dfrac{1}{32}=b^{-5}\\\Rightarrow b^5=32\\\Rightarrow b=32^{\dfrac{1}{5}}\\\Rightarrow b=2[/tex]

Finding [tex]a[/tex]

[tex]a=\dfrac{12}{b^2}\\\Rightarrow a=\dfrac{12}{2^2}\\\Rightarrow a=3[/tex]

The equation is [tex]y=3(2)^x[/tex]

Learn more:

https://brainly.com/question/15114456?referrer=searchResults

https://brainly.com/question/19051102?referrer=searchResults