Respuesta :
Answer:
y = 3 · 2ˣ
Step-by-step explanation:
Exponential function is:
y = abˣ
Plug in the points:
⅜ = ab⁻³
12 = ab²
Solve the system of equations. Start by dividing the second equation by the first:
12 / ⅜ = (ab²) / (ab⁻³)
32 = b⁵
b = 2
Plug into either equation to find a:
a = 3
Therefore:
y = 3 · 2ˣ
An exponential function passing through the given points is required.
The equation is [tex]y=3(2)^x[/tex]
The points are [tex](-3,3/8)[/tex] and [tex](2,12)[/tex]
The exponential equation is of the form
[tex]y=ab^x[/tex]
The equations will be
[tex]\dfrac{3}{8}=ab^{-3}[/tex]
[tex]12=ab^{2}[/tex]
Dividing the equations
[tex]\dfrac{\dfrac{3}{8}}{12}=\dfrac{b^{-3}}{b^2}\\\Rightarrow \dfrac{1}{32}=b^{-5}\\\Rightarrow b^5=32\\\Rightarrow b=32^{\dfrac{1}{5}}\\\Rightarrow b=2[/tex]
Finding [tex]a[/tex]
[tex]a=\dfrac{12}{b^2}\\\Rightarrow a=\dfrac{12}{2^2}\\\Rightarrow a=3[/tex]
The equation is [tex]y=3(2)^x[/tex]
Learn more:
https://brainly.com/question/15114456?referrer=searchResults
https://brainly.com/question/19051102?referrer=searchResults