Respuesta :
Explanation:
The capacitance in two parallel-plate capacitors is:
[tex]C=\frac{K\epsilon_oA}{d}[/tex]
For air, we have [tex]K_1=1[/tex]
For plastic, we have [tex]K_2=2.25[/tex]
Hence:
[tex]C_1=\frac{K_1\epsilon_oA}{d_1}=\frac{\epsilon_oA}{d_1}\\C_2=\frac{K_2\epsilon_oA}{d_2}=2.25(\frac{\epsilon_oA}{d_2})[/tex]
a) Recall that the potential difference between the plates is the same ([tex]V_1=V_2=V[/tex]). The electric field is given by:
[tex]E_1=\frac{V_1}{d_1}=\frac{V}{d_1}\\E_2=\frac{V_2}{d_2}=\frac{V}{d_1}[/tex]
The potential difference is defined as:
[tex]V_1=\frac{Q_1}{C_1}=V\\V_2=\frac{Q_2}{C_2}=V[/tex]
Replacing:
[tex]E_1=\frac{Q_1}{C_1d_1}\\E_2=\frac{Q_1}{C_1d_2}\\\\E_1d_1=\frac{Q_1}{C_1}\\E_2d_2=\frac{Q_1}{C_1}\\E_1d_1=E_2d_2\\\frac{E_1}{E_2}=\frac{d_2}{d_1}[/tex]
b) The energy is defined as:
[tex]U=\frac{1}{2}CV^2[/tex]
So:
[tex]U_1=\frac{1}{2}C_1V_1^2=\frac{1}{2}C_1V^2\\U_2=\frac{1}{2}C_2V_2^2=\frac{1}{2}C_2V^2\\U_1=\frac{1}{2}\frac{\epsilon_oA}{d_1}V^2\\U_2=\frac{1}{2}\frac{2.25\epsilon_oA}{d_2}V^2\\\frac{0.88U_2d_2}{\epsilon_oA}=V^2\\\frac{2U_1d_1}{\epsilon_oA}=V^2\\\frac{0.88U_2d_2}{\epsilon_oA}=\frac{2U_1d_1}{\epsilon_oA}\\\frac{U_1}{U_2}=0.44\frac{d_2}{d_1}[/tex]
(a) The magnitudes of the electric fields between the plates is [tex]E_1 = 2.25(\frac{E_2C_1}{C_2} )[/tex].
(b) The energy stored in the capacitors when compared is [tex]U_1 = U_2 (\frac{C_1}{C_2} )[/tex]
The capacitance of the two capacitor is given as;
[tex]C= \frac{k\epsilon _0 \ A}{d}[/tex]
where;
- k is dielectric constant, air = 1 and plastic = 2.25
The capacitance for the first capacitor;
[tex]C_1= \frac{1 \times \epsilon _0 \ A}{d}= \frac{ \epsilon _0 \ A}{d_1}\\\\d_1 = \frac{\epsilon _0 \ A}{C_1}[/tex]
The capacitance of the second capacitor;
[tex]C_2= \frac{2.25 \times \epsilon _0 \ A}{d_2}\\\\d_2 = \frac{2.25 \times \epsilon _0 \ A}{C_2}[/tex]
The potential difference and electric field between the plates is given as;
[tex]Q = CV\\\\V = \frac{Q}{C} \\\\E = \frac{V}{d} \\\\E = \frac{Q}{Cd}\\\\Ed = \frac{Q}{C} = V\\\\E_1d_1 = E_2 d_2\\\\E_1 = \frac{E_2d_2}{d_1} \\\\E_1 = E_2(\frac{d_2}{d_1})\\\\E_1 = E_2 (\frac{2.25\times \epsilon _0 A}{C_2} \times \frac{C_1}{\epsilon _0 A} )\\\\E_1 = E_2(\frac{2.25C_1}{C_2} )\\\\E_1 = 2.25(\frac{E_2 C_1}{C_2} )[/tex]
(b)
The energy stored in each capacitor is given as;
[tex]U_1 = \frac{1}{2} C_1 V^2\\\\U_2 = \frac{1}{2} C_2 V^2\\\\\frac{U_1}{U_2} = \frac{2C_1V^2}{2C_2V^2} \\\\\frac{U_1}{U_2} = \frac{C_1}{C_2}[/tex]
[tex]U_1 = U_2 (\frac{C_1}{C_2} )[/tex]
Learn more here:https://brainly.com/question/17156888