Answer:
[tex]4^{-3}[/tex]
Step-by-step explanation:
Using the rules of exponents
[tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]
[tex]a^{-m}[/tex] = [tex]\frac{1}{a^{m} }[/tex], thus
[tex]4^{-5}[/tex] × 4²
= [tex]4^{(-5+2)}[/tex] = [tex]4^{-3}[/tex] = [tex]\frac{1}{4^{3} }[/tex] = [tex]\frac{1}{64}[/tex]