Answer:
Value of a ( Length of BC) = 16.4925cm
Step-by-step explanation:
Given: In right Δ ABC, m∠B = 90°, and m∠A = 30° and Hypotenuse AC = 32.9848450049 cm.
To find: Length of BC (value of a) = ?
Sol: In right Δ ABC,
m∠A + m∠B + m∠C = 180° ( sum of angles of a triangle)
30° + 90° + m∠C = 180°
m∠C = 180° - 120° = 60°
Now Using trigonometry ratios, in right Δ ABC,
[tex]Cos C = \frac{side\ adjacent\ to\angle C}{hypotenuse}[/tex]
[tex]Cos 60 = \frac{BC}{AC}[/tex]
[tex]\frac{1}{2} = \frac{a}{32.985}[/tex] (∵ cos 60° = 1/2 and [tex]32.9848450049 \approx\ 32.985)[/tex]
[tex]2a = 32.985[/tex]
[tex]a = 16.4925[/tex]
Therefore, value of a ( Length of BC) = 16.4925 cm.