Respuesta :
Answer:
[Ca⁺²] = 0.0123 M
1234 ppm of CaCO₃
Explanation:
Ca(In)²⁺ + EDTA ⟶ Ca(EDTA)²⁺ + In
To solve this problem we need to keep in mind the definition of Molarity (moles/L) and parts per million (mg CaCO₃ / L water). First we calculate the moles of EDTA:
- 0.0450 M * 13.70 mL = 0.6165 mmol EDTA
Looking at the reaction we see that one mol of EDTA reacts with one mol of Ca(In)²⁺, so we have as well 0.6165 mmol Ca(In)²⁺ (which for this case is the same as Ca⁺²). We calculate the molarity of Ca⁺²:
- [Ca⁺²] = 0.6165 mmol / 50 mL = 0.0123 M
For calculating the concentration in ppm, we use the moles of Ca⁺² and the molecular weight of CaCO₃ (100.09 g/mol):
- 0.6165 mmol Ca⁺² * [tex]\frac{1mmolCaCO_{3}}{1mmolCa^{+2}}[/tex] * 100.09 mg/mmol = 61.70 mg CaCO₃
That is the mass of CaCO₃ present in 50 mL (or 0.05 L) of water, so the concentration in ppm is:
- 61.70 mg / 0.05 L = 1234 ppm
Answer:
The hardness of the groundwater in molarity and in parts per million of [tex]CaCO_3[/tex] by mass is 1440 ppm.
Explanation:
The given chemical equation is
[tex]Ca(In)^2^+ + EDTA\ gives\ Ca(EDTA)^2^+ + In[/tex]
Step 1:
We use the volume of EDTA consumed in the titration to calculate themoles of ions:
[tex]$0.012 \mathrm{~L}\times 0.0600 \mathrm{M} \times \frac{1 \mathrm{molCa}^{+2}}{1 \mathrm{molE} D T A}=7.20 \times 10^{-4} \mathrm{~mol} \mathrm{Ca}^{+2}$[/tex]
Step 2:
To calculate in ppm, we use the moles of and convert to mg of :
[tex]7.20 \times 10^{-4} \mathrm{~mol} \mathrm{Ca}^{+2}[/tex]
[tex]=7.20 \times 10^{-4} \mathrm{~mol} \mathrm\ {CaCO}_{3} 7.20 \times 10^{-4} \mathrm{~mol} \mathrm\ {CaCO}_{3} \times$100 \mathrm{~g} / \mathrm{mol} \times \frac{1000 \mathrm{mg}}{1 g}[/tex]
[tex]=72 \mathrm{mg} \mathrm\ {CaCO}_{3}$[/tex]
Step 3:
Finally, the concentration in ppm is:
[tex]72 mg \ CaCO_3 / 0.050L = 1440 ppm[/tex]
To learn more, refer:
brainly.com/question/13646918