Answer:
Hence the value of n should be 580.
Step-by-step explanation:
Consider the provided information.
It is given that e = 0.05
p = 32% = 0.32
The confidence interval is 99%
for 99% CI critical Z = 2.580
We can calculate the sample size by using the formula.
[tex]n = p (1-p)(\frac{z_{\frac{\alpha}{2}}}{e})^2[/tex]
Substitute the respective values
[tex]n =0.32(1-0.32)(\frac{2.58}{0.05})^2[/tex]
[tex]n =0.2176(2662.56)[/tex]
[tex]n =579.37[/tex]
Hence the value of n should be 580.