Answer:
[tex]f'(x)=4e^{4x} -4e^{-4x}[/tex]
Step-by-step explanation:
To find this derivative, we will need to use the chain rule.
As there is a variable in the exponent we can use this formula:
[tex]f'(x)=u'e^u[/tex]
In this case, [tex]u=4x[/tex] and [tex]u=-4x[/tex]
This means that [tex]u'=4[/tex] and [tex]u'=-4[/tex] respectively
This gives us [tex]f'(x)=4e^{4x} -4e^{-4x}[/tex]
Answer:
Step-by-step explanation:
note : (e^(u(x))' = (u(x))'e^(u(x)
f(x)= e^(4x) + e^-(4x)
f'(x) =4e^(4x) - 4 e^-(4x)