Answer:
[tex]\omega_f=14.6608\,rad.s^{-1}[/tex]
[tex]t=54.7389\,s[/tex]
[tex]N_f=237.2022 \,rev[/tex]
Explanation:
Given that:
Initial speed of flywheel after power failure, [tex]N_i=520\,rpm\Rightarrow\omega_i=\frac{2\pi\times 520}{60}=54.4543\,rad.s^{-1}[/tex]
mass of flywheel, [tex]m=40\,kg[/tex]
diameter of flywheel, [tex]d=75\,cm[/tex]
time duration of power failure,[tex]t=40\,s[/tex]
No. of revolutions during the power failure,[tex]n=220 \,rev=2\pi\times 220 \,rad[/tex]
we know from the equation of motion
[tex]n=\omega_i.t+\frac{1}{2} \alpha.t^2[/tex]
[tex]440\pi=54.4543\times 40+\frac{1}{2} \alpha\times 40^2[/tex]
[tex]\alpha=-0.9948\,rad.s^{-2}[/tex]
Negative sign indicates deceleration.
Now for the flywheel speed at the beginning of power failure we use:
[tex]\omega_f=\omega_i+\alpha.t[/tex].............................................(1)
where [tex]\omega_f[/tex]= final speed
[tex]\omega_f=54.4543-0.9948\times 40[/tex]
Now using eq.(1) until the flywheel stops.
i.e.
[tex]\omega_f=0[/tex]
while other conditions being the same
[tex]0=54.4543-0.9948\times t[/tex]
[tex]t=54.7389\,s[/tex]
For this case the no. of revolution made before stopping:
[tex]\omega_f^2=\omega_i^2+2.\alpha.n_f[/tex]
[tex]0^2=54.4543^2-2\times 0.9948\times n_f[/tex]
[tex]n_f=1490.3854 \,rad[/tex]