Respuesta :

Answer:

The desired such number is 3.

Step-by-step explanation:

Let the given such number  = m

Now, 42 is divided by m ⇒[tex]\frac{42}{m}[/tex]   is the desired expression.

Now, The quotient is added to 11.

⇒[tex]\frac{42}{m}  + 11[/tex]   is the desired expression.

The sum is again multiplied by 5.

⇒[tex](\frac{42}{m} + 11) \times 5[/tex]   is the desired expression.

The product is 125.

⇒[tex](\frac{42}{m} + 11) \times 5   = 125[/tex]   is the desired expression.

Now, solving for the value of m , we get:

[tex](\frac{42}{m} + 11) \times 5   = 125  \implies(\frac{42}{m} + 11)   = \frac{125}{5} \\or, (\frac{42}{m} + 11)   = 25\\or, (\frac{42}{m} )  =  25 -  11 = 14[/tex]

⇒[tex]\frac{42}{m}   = 14 \implies   m   =  \frac{42}{14}   = 3[/tex]

or, m  = 3

Hence, the desired such number is 3.