Respuesta :
Answer:
Option (a) is correct.
[tex]f(x)=x^2+16x+60[/tex]
Step-by-step explanation:
Given :A function has real zeros at x = −10 and x = −6 .
We have to find the function that has real zeros at x = −10 and x = −6.
Consider real zeros at x = −10 and x = −6.
x = - 10 ⇒ x + 10 = 0
x = - 6 ⇒ x + 6 = 0
Multiply both zeroes, we have,
[tex](x+10)(x+6)[/tex]
Apply Distributive rule,
[tex](a+b)(c+d)=ac+ad+bc+bd[/tex]
we have,
[tex](x+10)(x+6)=x^2+10x+6x+60[/tex]
Simplify, we have,
[tex](x+10)(x+6)=x^2+16x+60[/tex]
Thus, [tex]f(x)=x^2+16x+60[/tex]
Option (a) is correct.