Respuesta :
[tex] (4xy-3z)^{2} =(4xy)^{2} -2(4xy)(3z)+ (3z)^{2} =16 x^{2} y^{2} -24xyz+9 z^{2} [/tex]
The type of special product is 'a perfect square trinomial'.
The type of special product is 'a perfect square trinomial'.
Answer:
[tex]16x^2y^2-24xyz+9z^2[/tex]
It is a perfect square trinomial.
Step-by-step explanation:
The given expression is [tex](4xy-3z)^2[/tex]
We can use the formula [tex](a-b)^=a^2-2ab+b^2[/tex]
Here, we have
a = 4xy, b = 3z
Using the formula, we have
[tex](4xy-3z)^2\\=(4xy)^2-2(4xy)(3z)+(3z)^2\\\\16x^2y^2-24xyz+9z^2[/tex]
Therefore, the equivalent expression is [tex]16x^2y^2-24xyz+9z^2[/tex]
It is a perfect square trinomial.