Which is equivalent to (4xy – 3z)2, and what type of special product is it?


16x2y2 + 9z2, the difference of squares

16x2y2 + 9z2, a perfect square trinomial

16x2y2 – 24xyz + 9z2, the difference of squares

16x2y2 – 24xyz + 9z2, a perfect square trinomial

Respuesta :

[tex] (4xy-3z)^{2} =(4xy)^{2} -2(4xy)(3z)+ (3z)^{2} =16 x^{2} y^{2} -24xyz+9 z^{2} [/tex]
The type of special product is 'a perfect square trinomial'.

Answer:

[tex]16x^2y^2-24xyz+9z^2[/tex]

It is a perfect square trinomial.

Step-by-step explanation:

The given expression is [tex](4xy-3z)^2[/tex]

We can use the formula [tex](a-b)^=a^2-2ab+b^2[/tex]

Here, we have

a = 4xy, b = 3z

Using the formula, we have

[tex](4xy-3z)^2\\=(4xy)^2-2(4xy)(3z)+(3z)^2\\\\16x^2y^2-24xyz+9z^2[/tex]

Therefore, the equivalent expression is [tex]16x^2y^2-24xyz+9z^2[/tex]

It is a perfect square trinomial.