Respuesta :
Hello,
1)
y=5x
Dom=R
Range=R
no asymptote
2)
y= log (5x)
Dom= [tex] R^{+} [/tex]
asymptote: x=0 (vertical)
1)
y=5x
Dom=R
Range=R
no asymptote
2)
y= log (5x)
Dom= [tex] R^{+} [/tex]
asymptote: x=0 (vertical)

Answer:
1) For [tex]y=5x[/tex]
A) Domain= [tex](-\infty,\infty) [ \left.\begin{matrix}x\end{matrix}\right|x\varepsilon \mathbb{R}][/tex]
B) Range= [tex](-\infty,\infty) [ \left.\begin{matrix}y\end{matrix}\right|y\varepsilon \mathbb{R}][/tex]
C) y-intercept = 0
D) Asymptote= No asymptote
2) For [tex]y=log_5x[/tex]
A) Domain=Domain= [tex](0,\infty) [ \left.\begin{matrix}x\end{matrix}\right|x>0][/tex]
B) Range= [tex](-\infty,\infty) [ \left.\begin{matrix}y\end{matrix}\right|y\varepsilon \mathbb{R}][/tex]
C) y-intercept = None
D) Vertical Asymptote: x=0
Step-by-step explanation:
Given : [tex]y=5x[/tex] and [tex]y=log_5x[/tex]
Refer the graph attached.
1) In equation (1) [tex]y=5x[/tex]
→The domain is the set of all possible values in which function is defined.
y=5x is a linear polynomial defined on all real numbers.
Domain= [tex](-\infty,\infty) [ \left.\begin{matrix}x\end{matrix}\right|x\varepsilon \mathbb{R}][/tex]
→Range is the set of all values that function takes.
It also include all real numbers.
Range= [tex](-\infty,\infty) [ \left.\begin{matrix}y\end{matrix}\right|y\varepsilon \mathbb{R}][/tex]
→y-intercept- Value of y at the point where the line crosses the y axis.
put x=0 in equation y=5x we get, y=0
Therefore, y-intercept = 0 (We can see in the graph also)
→An asymptote is a line that a curve approaches, but never touches.
Asymptote= No asymptote
2) Now in equation (2) [tex]y=log_5x[/tex]
Domain= [tex](0,\infty) [ \left.\begin{matrix}x\end{matrix}\right|x>0][/tex]
because log function is not defined in negative.
Range= [tex](-\infty,\infty) [ \left.\begin{matrix}y\end{matrix}\right|y\varepsilon \mathbb{R}][/tex]
y-intercept - None
Vertical Asymptote: x=0
