Graph y = 5x and y = log5x on a sheet of paper using the same set of axes. Use the graph to describe the domain and range of each function. Then identify the y-intercept of each function and any asymptotes of each function. Explain also.

Respuesta :

caylus
Hello,

1)
y=5x
Dom=R
Range=R
no asymptote

2)
y= log (5x)
Dom= [tex] R^{+} [/tex]
asymptote: x=0 (vertical)
Ver imagen caylus

Answer:

1) For  [tex]y=5x[/tex]

A)  Domain= [tex](-\infty,\infty) [ \left.\begin{matrix}x\end{matrix}\right|x\varepsilon \mathbb{R}][/tex]

B) Range= [tex](-\infty,\infty) [ \left.\begin{matrix}y\end{matrix}\right|y\varepsilon \mathbb{R}][/tex]

C) y-intercept = 0

D) Asymptote= No asymptote

2) For   [tex]y=log_5x[/tex]

A)  Domain=Domain=  [tex](0,\infty) [ \left.\begin{matrix}x\end{matrix}\right|x>0][/tex]

B) Range= [tex](-\infty,\infty) [ \left.\begin{matrix}y\end{matrix}\right|y\varepsilon \mathbb{R}][/tex]

C) y-intercept =  None

D) Vertical Asymptote:   x=0

Step-by-step explanation:

Given : [tex]y=5x[/tex] and [tex]y=log_5x[/tex]

Refer the graph attached.

1)  In equation (1)  [tex]y=5x[/tex]

The domain is the set of all possible values in which function is defined.  

y=5x is a linear polynomial defined on all real numbers.

Domain= [tex](-\infty,\infty) [ \left.\begin{matrix}x\end{matrix}\right|x\varepsilon \mathbb{R}][/tex]

Range is the set of all values that function takes.

It also include all real numbers.

Range= [tex](-\infty,\infty) [ \left.\begin{matrix}y\end{matrix}\right|y\varepsilon \mathbb{R}][/tex]

→y-intercept- Value of y at the point where the line crosses the y axis.

put x=0 in equation y=5x we get, y=0

Therefore, y-intercept = 0 (We can see in the graph also)

→An asymptote is a line that a curve approaches, but never touches.

Asymptote= No asymptote

2) Now in equation (2) [tex]y=log_5x[/tex]

Domain=  [tex](0,\infty) [ \left.\begin{matrix}x\end{matrix}\right|x>0][/tex]

because log function is not defined in negative.

Range=  [tex](-\infty,\infty) [ \left.\begin{matrix}y\end{matrix}\right|y\varepsilon \mathbb{R}][/tex]

y-intercept - None

Vertical Asymptote:   x=0

Ver imagen tardymanchester