The coefficient of linear expansion of copper is 17 x 10^-6 K-1. A block of copper 30 cm wide, 45 cm long, and 10 cm thick is heated from 0°C to 100°C What is the change in the volume of the block?

Respuesta :

Answer:

The change in volume is [tex]6.885\times 10^{- 5}\ [/tex]

Solution:

As per the question:

Coefficient of linear expansion of Copper, [tex]\alpha = 17\times 10^{- 6}\ K^{- 1}[/tex]

Initial Temperature, T = [tex]0^{\circ}[/tex] = 273 K

Final Temperature, T' = [tex]100^{\circ}[/tex] = 273 + 100 = 373 K

Now,

Initial Volume of the block, V = [tex]30\times 45\times 10\times 10^{- 6}\ m^{3} = 0.0135\ m^{3}[/tex]

[tex]V' = V(1 + \gamma \Delta T)[/tex]

[tex]\gamma = 3\alpha [/tex]

[tex]V' = V(1 + 3\alpha \Delta T)[/tex]

where

V' = Final volume

[tex]V' - V= 0.0135\times 17\times 10^{- 6} \times (T' - T))[/tex]

[tex]\Delta V= 0.0135\times 3\times 17\times 10^{- 6} \times (373 - 273)) = 6.885\times 10^{- 5}\ [/tex]