Answer:
The change in volume is [tex]6.885\times 10^{- 5}\ [/tex]
Solution:
As per the question:
Coefficient of linear expansion of Copper, [tex]\alpha = 17\times 10^{- 6}\ K^{- 1}[/tex]
Initial Temperature, T = [tex]0^{\circ}[/tex] = 273 K
Final Temperature, T' = [tex]100^{\circ}[/tex] = 273 + 100 = 373 K
Now,
Initial Volume of the block, V = [tex]30\times 45\times 10\times 10^{- 6}\ m^{3} = 0.0135\ m^{3}[/tex]
[tex]V' = V(1 + \gamma \Delta T)[/tex]
[tex]\gamma = 3\alpha [/tex]
[tex]V' = V(1 + 3\alpha \Delta T)[/tex]
where
V' = Final volume
[tex]V' - V= 0.0135\times 17\times 10^{- 6} \times (T' - T))[/tex]
[tex]\Delta V= 0.0135\times 3\times 17\times 10^{- 6} \times (373 - 273)) = 6.885\times 10^{- 5}\ [/tex]