The pressure in a traveling sound wave is given by the equation ΔP = (1.78 Pa) sin [ (0.888 m-1)x - (500 s-1)t] Find (a) the pressure amplitude, (b) the frequency, (c) the wavelength, and (d) the speed of the wave .

Respuesta :

Answer:

a) [tex]P_m=1.78\ Pa[/tex]

b) [tex]f=79.5775\ Hz[/tex]

c) [tex]\lambda=7.076\ m[/tex]

d) [tex]v=563.06\ m.s^{-1}[/tex]

Explanation:

Given equation of pressure variation:

[tex]\Delta P= (1.78\ Pa)\ sin\ [(0.888\ m^{-1})x-(500\ s^{-1})t][/tex]

We have the standard equation of periodic oscillations:

[tex]\Delta P=P_m\ sin\ (kx-\omega.t)[/tex]

By comparing, we deduce:

(a)

amplitude:

[tex]P_m=1.78\ Pa[/tex]

(b)

angular frequency:

[tex]\omega=2\pi.f[/tex]

[tex]2\pi.f=500[/tex]

∴Frequency of oscillations:

[tex]f=\frac{500}{2\pi}[/tex]

[tex]f=79.5775\ Hz[/tex]

(c)

wavelength is given by:

[tex]\lambda=\frac{2\pi}{k}[/tex]

[tex]\lambda=\frac{2\pi}{0.888}[/tex]

[tex]\lambda=7.076\ m[/tex]

(d)

Speed of the wave is gives by:

[tex]v=\frac{\omega}{k}[/tex]

[tex]v=\frac{500}{0.888}[/tex]

[tex]v=563.06\ m.s^{-1}[/tex]