Answer:
a)
(i) t = 71 sec
(ii) x (max) = 43250 mt
(iii) y(max) = 6250 mt
b) y = x Tan α - 4.9 x² / V(o)² ( cos α) ²
Step-by-step explanation:
Equations describing a projectile motion are
x = V(o)*cos θ*t y = V(o)*sinθ*t - gt²
x(max) = V(o)²*sin2θ*t
a) α = 30° and V(o) = 700 m/sec
When y = 0 means the projectile fall down to ground, the:
y = V(o) sin α * t - 4.9 * t² ⇒ y = 700 sin30 * t - 4.9*t²
y = 700*(1/2)*t - 4.9 t² y = 0 700*(1/2)*t = 4.9 t²
700*(1/2) = 4.9 t
t = 71,43 sec ⇒ t = 71 sec
(ii) How far from the gun will it hit the ground .That is the point of x (max)
x (max) = V(o)²*sin2θ/g x (max) = (700)²(√3)/2*9,8
x (max) = (490000)*1.73/19.6 x (max) = 43250 mt
(iii) What is the mximum height
y = -1/2g*t² + V(o)sin α*t + y(o)
y (max) = - 1/2 (9.8)*(71/2)² (700)*1/2*(71/2) ⇒ y(max) = 12425 - 6175
y(max) = 6250 mt
b) We have
x = V(o) cos α * t and y = V(o) sin α * t - 4.9* t²
From first equation t = x / ( V(o) cos α ) and by subtitution in second equation we have
y = V(o) sin α * ( x / ( V(o) cos α ) - 4.9 [ x / ( V(o) cos α )]²
y = x Tan α - 4.9 x² / V(o)² ( cos α) ²