Answer:
[tex]V_F=0.684\ gallon[/tex]
Explanation:
Given:
We know:
[tex]\beta_s=3\times \alpha_s[/tex]
[tex]\therefore \beta_s=3.3\times 10^{-5}\ ^{\circ}C^{-1}[/tex]
Now the change in volume of vessel:
[tex]\Delta V_s=V.\beta_s.\Delta T[/tex]
[tex]\Delta V_s=60\times 3.3\times 10^{-5}\times 20[/tex]
[tex]\Delta V_s=0.396\ gallon[/tex]
Now the change in volume of oil:
[tex]\Delta V=V.\beta.\Delta T[/tex]
[tex]\Delta V=60\times 9\times 10^{-4}\times 20[/tex]
[tex]\Delta V=1.08\ gallon[/tex]
Therefore the volume that will overflow is:
[tex]V_F=\Delta V-\Delta V_s[/tex]
[tex]V_F=1.08-0.396[/tex]
[tex]V_F=0.684\ gallon[/tex]