Answer:
[tex]\Delta x=245\ mm[/tex]
Explanation:
Given:
final velocity of skier before coming in contact of spring:
Using eq. of motion:
[tex]v^2=u^2+gh[/tex]
[tex]v^2=4^2+9.8\times 2[/tex]
[tex]v=5.9666\ m.s^{-1}[/tex]
Now the time taken by the skier to reach down:
[tex]v=u+gt[/tex]
[tex]5.9666=4+9.8\ t[/tex]
[tex]t=0.2007\ s[/tex]
Now we calculate force using Newton's second law:
[tex]F=\frac{dp}{dt}[/tex]
[tex]F=\frac{m(v-u)}{t}[/tex]
[tex]F=\frac{70\times(5.9666-4)}{0.2007}[/tex]
[tex]F\approx686\ N[/tex]
∴Compression in spring before the skier momentarily comes to rest:
[tex]\Delta x=\frac{F}{k}[/tex]
[tex]\Delta x=\frac{686}{2800}[/tex]
[tex]\Delta x=0.245\ m[/tex]
[tex]\Delta x=245\ mm[/tex]