A 326 g object is attached to a spring and executes simple harmonic motion with a period of 0.250 s. If the total energy of the system is 5.83 J, find a) the maximum speed of the object, b) the force constant of the spring, and c) the amplitude of the motion.

*Provide full explanation and solution for each part.

Respuesta :

Answer:

a) [tex]v_{max}=5.98\frac{m}{s}[/tex]

b) [tex]k=205.92\frac{N}{m}[/tex]

c) [tex]A=0.24m[/tex]

Explanation:

a) In the equilibrium position of the system, that is when the spring is not elongated, the potential energy is zero. Therefore, the total energy of the system is the maximum kinetic energy:

[tex]E=K_{max}\\E=\frac{mv_{max}^2}{2}\\v_{max}=\sqrt{\frac{2E}{m}}\\v_{max}=\sqrt{\frac{2(5.83J)}{0.326kg}}\\v_{max}=5.98\frac{m}{s}[/tex]

b) The force constant of the spring can be calculated from the natural frequency of the system:

[tex]\omega^2=\frac{k}{m}\\k=m\omega^2[/tex]

Recall that [tex]\omega=\frac{2\pi}{T}\\[/tex], that is the distance traveled in one revolution divided into the time of one revolution. Replacing and solving for k:

[tex]k=\frac{m4\pi^2}{T^2}\\k=\frac{(0.326kg)4\pi^2}{(0.25s)^2}\\k=205.92\frac{N}{m}[/tex]

c) The maximum speed is directly proportional to the amplitude of the motion:

[tex]v_{max}=A\omega\\A=\frac{v_{max}}{\omega}\\A=\frac{(v_{max})T}{2\pi}\\A=\frac{(5.98\frac{m}{s})0.25s}{2\pi}\\A=0.24m[/tex]

a) The maximum velocity of the object   [tex]V_{max}=5.98\dfrac{m}{s}[/tex]

b) The spring constant will be [tex]K=205.92 \dfrac{N}{m}[/tex]

c) The amplitude of the motion [tex]A=0.24m[/tex]

What will be the velocity, spring constant, and amplitude of the object?

a) When the spring is not elongated then the PE of the object is zero so the total energy will be KE of the object

[tex]E=\dfrac{1}{2} m v_{max}^2[/tex]

[tex]V_{max}=\sqrt{\dfrac{2E}{m} } =\sqrt{\dfrac{2\times 5.83}{0.326} }[/tex]

[tex]V_{max}=5.98\dfrac{m}{s}[/tex]

b) The spring constant will be calculated as

[tex]k= mw^2[/tex]  

Since    

[tex]w=\dfrac{2\pi}{T}[/tex]

[tex]k= m(\dfrac{2\pi }{T})^2 =\dfrac{0.326\times 4\pi ^2}{(0.25^2)}[/tex]

[tex]k=205.92\ \dfrac{N}{M}[/tex]

c) The maximum speed is directly proportional to the amplitude of the motion:

[tex]V_{max}=Aw[/tex]

[tex]A=\dfrac{V_{max}}{w} = \dfrac{V_{max}T}{2\pi}[/tex]

[tex]A=\dfrac{5.98\times 0.25}{2\pi}[/tex]

[tex]A=0.24m[/tex]

Thus

a) The maximum velocity of the object   [tex]V_{max}=5.98\dfrac{m}{s}[/tex]

b) The spring constant will be [tex]K=205.92 \dfrac{N}{m}[/tex]

c) The amplitude of the motion [tex]A=0.24m[/tex]

To know more about the Spring mass system follow

https://brainly.com/question/15701473