A rancher wants to fence in an area of 1500000 square feet in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the shortest length of fence that the rancher can use? Note: The answer to this problem requires that you enter the correct units. (Enter your answer with a space before the units)

Respuesta :

Answer:

6000 ft

Step-by-step explanation:

Let length of rectangular field=x

Breadth of rectangular field=y

Area of rectangular field=[tex]1500000[/tex] square ft

Area of rectangular field=[tex]l\times b[/tex]

Area of rectangular field=[tex]x\time y[/tex]

[tex]1500000=xy[/tex]

[tex]y=\frac{1500000}{x}[/tex]

Fencing used ,P(x)=[tex]x+x+y+y+y=2x+3y[/tex]

Substitute the value of y

P(x)=[tex]2x+3(\frac{1500000}{x})[/tex]

[tex]P(x)=2x+\frac{4500000}{x}[/tex]

Differentiate w.r.t x

[tex]P'(x)=2-\frac{4500000}{x^2}[/tex]

Using formula:[tex]\frac{dx^n}{dx}=nx^{n-1}[/tex]

[tex]P'(x)=0[/tex]

[tex]2-\frac{4500000}{x^2}=0[/tex]

[tex]\frac{4500000}{x^2}=2[/tex]

[tex]x^2=\frac{4500000}{2}=2250000[/tex]

[tex]x=\sqrt{2250000}=1500[/tex]

It is always positive because length is always positive.

Again differentiate w.r.t x

[tex]P''(x)=\frac{9000000}{x^3}[/tex]

Substitute x=1500

[tex]P''(1500)=\frac{9000000}{(1500)^3}>0[/tex]

Hence, fencing is minimum at x=1 500

Substitute x=1 500

[tex]y=\frac{1500000}{1500}=1000[/tex]

Length of rectangular field=1500 ft

Breadth of rectangular field=1000 ft

Substitute the values

Shortest length of fence used=[tex]2(1500)+3(1000)=6000 ft[/tex]

Hence, the shortest length of fence that the rancher can used=6000 ft

Ver imagen lublana