1 kg of liquid UO_2 at 3100 K is mixed with 5 kg of UO2 at 3600 K. a. Find the temperature after mixing. b. Find the entropy changes of the system and surroundings. c. Is the process spontaneous? Assume C_p = 100 J/(mole-K) and is constant

Respuesta :

Explanation:

(a).  Let us assume that [tex]T_{f}[/tex] be the final temperature after mixing.

Hence,       [tex]m_{1}C_{p}(T_{1} - T_{f}) = m_{2}C_{p}(T_{f} - T_{2})[/tex]

       [tex]T_{f} = \frac{[T_{1} + \frac{m_{2}}{m_{1}} \times T_{2}]}{1 + \frac{m_{2}}{m_{1}}}[/tex]

The given data is as follows.

    [tex]m_{1}[/tex] = 1 kg,      [tex]m_{2}[/tex] = 5 kg

      [tex]T_{1}[/tex] = 3100 K,     [tex]T_{2}[/tex] = 3600 K

    [tex]C_{p}[/tex] = 100 J/mol K  

Hence, putting the given values into the above formula as follows.

        [tex]T_{f} = \frac{[T_{1} + \frac{m_{2}}{m_{1}} \times T_{2}]}{1 + \frac{m_{2}}{m_{1}}}[/tex]

        [tex]T_{f} = \frac{[3100 + (\frac{5}{1}) \times 3600]}{[1 + (\frac{5}{1})}][/tex]

          [tex]T_{f}[/tex] = 3516.7 K

(b).    As, entropy change of [tex]UO_{2}[/tex] with [tex]m_{1}[/tex] = 1 kg at 3100 K to attain 3516.7 K. Therefore, change in entropy will be calculated as follows.

       [tex]\Delta S_{1} = m_{1} C_{p} ln \frac{T_{f}}{T_{1}}[/tex]

                 = [tex]1 \times 100 \times ln (\frac{3516.7}{3100})[/tex]

                 = 12.22 J/molK

Now, entropy change of [tex]UO_{2}[/tex] with [tex]m_{2}[/tex] = 5kg at 3600 K to attain 3516.7 K. Hence,

        [tex]\Delta S_{2} = m_{2}C_{p} ln \frac{T_{f}}{T_{2}}[/tex]

                 = [tex]5 \times 100 \times ln(\frac{3516.7}{3600})[/tex]

                 = -11.63 J/mol k

So, entropy of the total mass of [tex]UO_{2}[/tex] will be as follows.

      [tex]\Delta S = \Delta S_{1} + \Delta S_{2}[/tex]

                           = 12.22 + (-11.63) J/mol K

                           = 0.59 J/mol K

(c).    As, there is occurring an increase in the entropy. Therefore, the process is spontaneous.