Answer:
Part 1 : Given equation,
f(x) = x + |2x − 5|,
We have,
f(x) = 10,
x + |2x - 5| = 10
|2x - 5| = 10 - x
2x - 5 = ±(10-x)
Case 1 : 2x - 5 = 10 - x
2x = 10 - x + 5
2x + x = 15
3x = 15
⇒ x = 5
Case 2 : 2x - 5 = -10 + x
2x = -10 + x + 5
2x - x = -5
⇒ x = -5
Thus, the value of x is 5 or -5
Part 2 : Given equation,
g(x) = 4x − 6 + |x + 3|,
Put x = a,
g(a) = 4a - 6 + |a + 3|
We have, g(a) = 3a + 9
4a - 6 + |a+3|=3a + 9
4a + |a + 3 | = 3a + 9 + 6
|a + 3| = 3a - 4a + 15
|a + 3| = -a + 15
⇒ a + 3 = ±(-a + 15)
Case 1 : a + 3 = -a + 15
a = -a + 15 - 3
a + a = 12
2a = 12
⇒ a = 6
Case 2 : a + 3 = a - 15
a = a - 15 - 3
a - a = -18
0 = -18 ( False )
Thus, the value of a is 6.