(a) In the deep space between galaxies, the density of atoms is as low as 106 atoms/m^3 , and the temperature is a frigid 2.7 K. What is the pressure? (b) What volume (in m^3) is occupied by 1 mol of gas? (c) If this volume is a cube, what is the length of its sides in kilometers?

Respuesta :

Answer:

[tex]3.726\times 10^{-17}\ Pa[/tex]

[tex]6.02464\times 10^{17}\ m^3[/tex]

844.58565402 km

Explanation:

[tex]\frac{N}{V}[/tex] = Density of atoms = [tex]10^6\ atoms/m^3[/tex]

n = Amount of substance = 1 mol

V = Volume

R = Gas constant = 8.314 J/mol K

[tex]k_b[/tex] = Boltzmann constant = [tex]1.38\times 10^{-23}\ J/K[/tex]

T = Temprature = 2.7 K

L = Side of cube

From ideal gas law we have the relation

[tex]PV=Nk_bT\\\Rightarrow P=\frac{Nk_bT}{V}\\\Rightarrow P=\frac{N}{V}k_bT\\\Rightarrow P=10^6\times 1.38\times 10^{-23}\times 2.7\\\Rightarrow P=3.726\times 10^{-17}\ Pa[/tex]

The pressure is [tex]3.726\times 10^{-17}\ Pa[/tex]

From ideal gas law

[tex]PV=nRT\\\Rightarrow V=\frac{nRT}{P}\\\Rightarrow V=\frac{1\times 8.314\times 2.7}{3.726\times 10^{-17}}\\\Rightarrow V=6.02464\times 10^{17}\ m^3[/tex]

The volume is [tex]6.02464\times 10^{17}\ m^3[/tex]

Volume is given by

[tex]V=L^3\\\Rightarrow L=V^{\frac{1}{3}}\\\Rightarrow L=\left(6.02464\times 10^{17}\right)^{\frac{1}{3}}\\\Rightarrow L=844585.65402\ m=844.58565402\ km[/tex]

The length of the side  of the cube is 844.58565402 km