A bicycle has wheels of 0.70 m diameter. The bicyclist accelerates from rest with constant acceleration to 22 km/h in 10.8 s. What is the angular acceleration of the wheels?

Respuesta :

Answer:

[tex]\alpha=0.16\frac{rad}{s^2}[/tex]

Explanation:

Angular acceleration is defined as the variation of angular speed with respect to time:

[tex]\alpha=\frac{\omega}{t}[/tex]

The relation between the angular speed and the linear speed is given by:

[tex]\omega=\frac{v}{r}[/tex]

Replacing (2) in (1):

[tex]\alpha=\frac{v}{rt}[/tex]

We need to convert [tex]\frac{km}{h}[/tex] to [tex]\frac{m}{s}[/tex]:

[tex]22\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=6.11\frac{m}{s}[/tex]

Recall that:

[tex]r=\frac{d}{2}=\frac{0.7m}{2}=3.5m[/tex]

Replacing:

[tex]\alpha=\frac{6.11\frac{m}{s}}{(3,5m)(10.8s)}\\\alpha=0.16\frac{rad}{s^2}[/tex]