Answer:
[tex]\alpha=0.16\frac{rad}{s^2}[/tex]
Explanation:
Angular acceleration is defined as the variation of angular speed with respect to time:
[tex]\alpha=\frac{\omega}{t}[/tex]
The relation between the angular speed and the linear speed is given by:
[tex]\omega=\frac{v}{r}[/tex]
Replacing (2) in (1):
[tex]\alpha=\frac{v}{rt}[/tex]
We need to convert [tex]\frac{km}{h}[/tex] to [tex]\frac{m}{s}[/tex]:
[tex]22\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=6.11\frac{m}{s}[/tex]
Recall that:
[tex]r=\frac{d}{2}=\frac{0.7m}{2}=3.5m[/tex]
Replacing:
[tex]\alpha=\frac{6.11\frac{m}{s}}{(3,5m)(10.8s)}\\\alpha=0.16\frac{rad}{s^2}[/tex]