Respuesta :

Answer:

First number = 3

Second number = 7

Step-by-step explanation:

Let one number be = [tex]x[/tex]

Let other number be = [tex]y[/tex]

"One number added to three times another number is 24" can be written mathematically as:

[tex]x+3y=24[/tex]

Five times the first number added to three times the other number is 36 can be written mathematically as:

[tex]5x+3y=36[/tex]

So, we have a system of equation as:

A) [tex]x+3y=24[/tex]

B) [tex]5x+3y=36[/tex]

Solving for [tex]x[/tex] and [tex]y[/tex] using elimination.

Multiplying equation A with -1 and adding it to B to eliminate [tex]y[/tex]

[tex]-1A[/tex] would be

[tex]-1(x+3y=24)[/tex]

[tex]-x-3y=-24[/tex]

[tex]-1A+B[/tex] would be

     [tex]-x-3y=-24[/tex]

+  [tex]5x+3y=36[/tex]

We have,

[tex]5x-x+3y-3y=36-24[/tex]

Thus [tex]y[/tex] is eliminated. Now, we can solve for [tex]x[/tex]

[tex]4x=12[/tex]

Dividing both sides by 4.

[tex]\frac{4x}{4}=\frac{12}{4}[/tex]

∴ [tex]x=3[/tex]

Plugging in [tex]x=3[/tex] in equation A to solve for [tex]y[/tex]

[tex]3+3y=24[/tex]

Subtracting both sides by 3.

[tex]3+3y-3=24-3[/tex]

[tex]3y=21[/tex]

Dividing both sides by 3.

[tex]\frac{3y}{3}=\frac{21}{3}[/tex]

∴ [tex]y=7[/tex]

So, first number = 3

Second number = 7