Ferns spread spores instead of seeds, and some ferns eject the spores at surprisingly high speeds. One species accelerates 1.4 μg spores to a 4.5 m/s ejection speed in a time of 1.0 ms. What impulse is provided to the spores? What is the average force on a spore?

Respuesta :

Answer:

Impulse is [tex]6.3*10^{-9}\:N \cdot s[/tex]

The average force is [tex]6.3*10^{-6} N[/tex]

Explanation:

When a mass [tex]m[/tex] undergoes a change in velocity [tex]\Delta v[/tex], its impulse [tex]I[/tex] is

[tex]I =m\Delta v[/tex]

and if a force [tex]F[/tex] is acting for time [tex]t[/tex], then the impulse [tex]I[/tex] is given by

[tex]I=F*t[/tex]

Now the mass of the spores in kg is

[tex]m=1.4*10^{-6}g*\frac{10^{-3}kg}{g}=1.4*10^{-9}kg[/tex]

we calculate the impulse from the first formula:

[tex]I =m\Delta v =(1.4*10^{-9}kg)(4.5\frac{m}{s} )=6.3*10^{-9}N\cdot s[/tex]

[tex]\boxed{I=6.3*10^{-9}\:N \cdot s}[/tex]

Now that we have impulse, we calculate the average force on the spore from the second formula:

[tex]F=\frac{I}{t} =\frac{6.3*10^{-9}}{1*10^{-3}s}=6.3*10^{-6} N[/tex]

[tex]\boxed{F=6.3*10^{-6} N}[/tex]

The average force on a spore is mathematically given as

F=6.3*10^{-6}N

Average force

Generally the equation for the impulse  is mathematically given as

I=ft

Where

m=1.4e{-9}

Therefore

I=ft

I =mdv

[tex]I=(1.4*10^{-9})(4.5\frac{m}{s} )\\\\I=6.3*10^{-9}Ns[/tex]

The average force is

[tex]F=\frac{I}{t}\\\\F=6.3*10^{-9}/1e{-3}[/tex]

F=6.3*10^{-6}N

For more information on Force

https://brainly.com/question/26115859