Respuesta :
Answer:
27.36516 W
Explanation:
[tex]\sigma[/tex] = Stefan-Boltzmann constant = [tex]5.67\times 10^{-8}\ W/m^2K^4[/tex]
[tex]\epsilon[/tex] = Emissivity = 0.95
[tex]T_h[/tex] = Hot body temperature = 36°C
[tex]T_c[/tex] = Cold body temperature = 4°C
d = Diameter = 20 cm
r = Radius = [tex]\frac{d}{2}=\frac{20}{2}=10\ cm[/tex]
h = Height = 20 cm
Area is given by
[tex]A=\pi r^2+2\pi rh[/tex]
The formula for net radiation heat loss is
[tex]q=\epsilon \sigma (T_h^4-T_c^4)A\\\Rightarrow q=\epsilon \sigma (T_h^4-T_c^4)\times (\pi r^2+2\pi rh)\\\Rightarrow q=0.95\times 5.67\times 10^{-8}\times (309.15^4-277.15^4)\times (\pi 0.1^2+2\pi 0.1\times 0.2)\\\Rightarrow q=27.36516\ W[/tex]
The radiation from the head is a major source of heat loss from the human body is 27.36516 W
The net rate of heat loss on a chilly 4°C day is equal to 27.37 Watts.
Given the following data:
- Emissivity = 0.95
- Hot body temperature = 36°C to K = 273.15 + 36 = 309.15 K.
- Cold body temperature = 4°C to K = 273.15 + 4 = 277.15 K.
- Height = 20 cm to m = 0.2 m.
- Diameter = 20 cm
- Radius = diameter/2 = 20/2 = 10 cm to m = 0.1 m.
Scientific data:
Stefan-Boltzmann constant = 5.67 × 10⁻⁸ W/m²K⁴
How to calculate the net rate of heat loss?
Mathematically, the net rate of heat loss is calculated by using this formula:
q = εσ(Th⁴ - Tc⁴)A = εσ(Th⁴ - Tc⁴)(πr² + 2πrh)
Substituting the given parameters into the formula, we have;
q = 0.95 × 5.67 × 10⁻⁸(309.15⁴ - 277.15⁴)(3.142 × 0.1² + 2 × 3.142 × 0.1 × 0.2)
q = 27.37 Watts.
Read more on rate of heat loss here: https://brainly.com/question/17199050
#SPJ5