A merry-go-round is a common piece of playground equipment. A 3.0-m-diameter merry-go-round, which can be modeled as a disk with a mass of 230 kg , is spinning at 17 rpm. John runs tangent to the merry-go-round at 4.2 m/s. What is the merry-go-round's angular velocity, in rpm, after John jumps on?

Respuesta :

Answer:

[tex]\omega_{f}=19.01\ rpm[/tex]  

Explanation:

given,  

diameter of merry - go - round = 3 m  

mass of the disk = 230 kg  

speed of the merry- go-round = 17 rpm  

speed = 4.2 m/s  

assuming mass of John = 30 kg  

[tex]I_{disk} = \dfrac{1}{2}MR^2[/tex]  

[tex]I_{disk} = \dfrac{1}{2}\times 230 \times 1.5^2[/tex]  

[tex]I_{disk} = 258.75 kg.m^2[/tex]  

initial angular momentum of the system  

[tex]L_i = I\omega_i + mvR[/tex]  

[tex]L_i =258.75\times 17 \times \dfrac{2\pi}{60} + 30 \times 4.2 \times 1.5[/tex]  

[tex]L_i =649.64\ kg.m^2/s[/tex]  

final angular momentum of the system  

[tex]L_f = (I_{disk}+mR^2)\omega_{f}[/tex]  

[tex]L_f = (258.75 + 30\times 1.5^2)\omega_{f}[/tex]  

[tex]L_f= (326.25)\omega_{f}[/tex]  

from conservation of angular momentum  

[tex]L_i = L_f[/tex]  

[tex]649.64 = (326.25)\omega_{f}[/tex]  

[tex]\omega_{f}=1.99 \times \dfrac{60}{2\pi}[/tex]  

[tex]\omega_{f}=19.01\ rpm[/tex]