Answer:
v₂ = 5131.42 m/s
Explanation:
given,
radius of the planet = r₁ = 9.00×10⁶ m
mass of the satellite = m₁ = 68 Kg
orbital radius = r₁ = 8 x 10⁷ m
orbital speed = v₁ = 4800 m/s
mass of second satellite = m₂ = 84.0 kg
orbital radius = r₂ = 7.00×10⁷ m
orbital speed of second satellite = v₂ = ?
using orbital speed of satellite
[tex]v = \sqrt{\dfrac{GM}{r}}[/tex]
so,
[tex]v \alpha \dfrac{1}{\sqrt{r}}[/tex]
now,
[tex]\dfrac{v_1}{v_2} =\sqrt{\dfrac{r_2}{r_1}}[/tex]
[tex]\dfrac{v_2}{4800} =\sqrt{\dfrac{8\times 10^7}{7 \times 10^7}}[/tex]
v₂ = 5131.42 m/s
The orbital speed of second satellite is equal to v₂ = 5131.42 m/s