Answer:
The mass of the ball is 0.23 kg
Explanation:
Given that
radius ,r= 3.74 cm
Density of the milk ,ρ = 1.04 g/cm³ = 1.04 x 10⁻³ kg/cm³
Normal force ,N= 9.03 x 10⁻² N
The volume of the ball V
[tex]V=\dfrac{4}{3}\pi r^3[/tex]
[tex]V=\dfrac{4}{3}\times \pi \times 3.74^3\ cm^3[/tex]
V= 219.13 cm³
The bouncy force on the ball = Fb
Fb = ρ V g
Fb + N = m g
m=Mass of the ball = Density x volume
m = γ V , γ =Density of the Ball
ρ V g + N = γ V g ( take g= 10 m/s²)
[tex]\gamma =\dfrac{N+\rho V g}{V g}[/tex]
[tex]\gamma =\dfrac{9.03\times 10^{-2}+1.04\times 10^{-3}\times 219.13\times 10}{219.13\times 10}[/tex]
γ = 0.00108 kg/cm³
m = γ V
m = 0.00108 x 219.13
m= 0.23 kg
The mass of the ball is 0.23 kg