A glass ball of radius 3.74 cm sits at the bottom of a container of milk that has a density of 1.04 g/cm3. The normal force on the ball from the container's lower surface has magnitude 9.03 x 10-2 N. What is the mass of the ball?

Respuesta :

Answer:

The mass of the ball is 0.23 kg

Explanation:

Given that

radius ,r= 3.74 cm

Density of the milk ,ρ = 1.04 g/cm³ = 1.04  x 10⁻³ kg/cm³

Normal force ,N= 9.03 x 10⁻² N

The volume of the ball V

[tex]V=\dfrac{4}{3}\pi r^3[/tex]

[tex]V=\dfrac{4}{3}\times \pi \times 3.74^3\ cm^3[/tex]

V= 219.13 cm³

The bouncy force on the ball = Fb

Fb = ρ V g

Fb  + N = m g

m=Mass of the ball = Density x volume

m = γ V    , γ =Density of the Ball

ρ V g  + N =  γ V g               ( take g= 10 m/s²)

[tex]\gamma =\dfrac{N+\rho V g}{V g}[/tex]

[tex]\gamma =\dfrac{9.03\times 10^{-2}+1.04\times 10^{-3}\times 219.13\times  10}{219.13\times 10}[/tex]

γ = 0.00108 kg/cm³

m = γ V

m = 0.00108 x 219.13

m= 0.23 kg

The mass of the ball is 0.23 kg