Answer:
a) 0∘ and 360∘
b) 300∘ and 60∘
c) 90∘ and 270∘
d) 180∘
Step-by-step explanation:
θ(0<=θ<=360∘)
then
a)
F=1/2(1−cosθ)
Putting F= 0
we get
0 = 1/2 (1−cosθ)
(1−cosθ) = 0
cosθ = 1
θ = [tex]cos^-^1[/tex] (1)
= 0∘ and 360∘
b) If F = 0.25
then putting values
1/4 = 1/2 (1−cosθ)
(1−cosθ) = 1/2
cosθ = 1/2
θ = [tex]cos^-^1[/tex] (1/2)
= 300∘ and 60∘
c) If F = 0.5
then putting values we get
1/2 = 1/2 (1−cosθ)
(1−cosθ) = 1
cosθ = 0
θ = [tex]cos^-^1[/tex] (0)
= 90∘ and 270∘
d) If F = 1
then putting values we get
1 = 1/2 (1−cosθ)
(1−cosθ) = 2
cosθ = -1
θ = [tex]cos^-^1[/tex] (-1)
= 180∘
So after these calculation we determine the vales of angles that are given uper.