Answer:
(u•w)(3) = 10
(w•u)(3) = 4
Step-by-step explanation:
u(x) = x² + 6
w(x) = √(x + 1)
(u•w)(x) = u(w(x))
(u•w)(x) = (w(x))² + 6
(u•w)(x) = (√(x + 1))² + 6
(u•w)(x) = x + 1 + 6
(u•w)(x) = x + 7
(u•w)(3) = 3 + 7
(u•w)(3) = 10
(w•u)(x) = w(u(x))
(w•u)(x) = √(u(x) + 1)
(w•u)(x) = √(x² + 6 + 1)
(w•u)(x) = √(x² + 7)
(w•u)(3) = √(3² + 7)
(w•u)(3) = 4