When 20.0 g of milk, initially at a temperature of 4.00°C, is added to 200 g of coffee, initially at a temperature of 70.00°C, what is the entropy increase of the Universe (in J/K)? The specific heats of milk and coffee can both be approximated as 4.20 J/(g · °C)

Respuesta :

Explanation:

According to the given situation, heat lost by coffee will be equal to heat gained by milk.

As we known that,  

                   Q = [tex]mC \Delta T[/tex]

So,    Heat energy lost by coffee = heat energy gained by milk

     [tex]200 g \times C \times (70 - T) = 20 g \times C \times (T - 4)[/tex]

                 704 = 11T

                  T = [tex]64^{o}C[/tex]

As, [tex]\Delta S = \Delta S_{milk} + \Delta S_{coffee}[/tex]

        [tex]\Delta S = 20 g \times C \times ln \frac{T_{f}}{T_{i}} + 200 g \times C \times n \frac{T_{f}}{T_{i}}[/tex]

                       = [tex]4.20 J/g^{o}C [50 ln \frac{(64 + 273)}{4 + 273} + 200 \times ln \frac{64 + 273}{70 + 273}][/tex]

                       = [tex]4.20 J/g^{o}C [50 \times 0.196 + 200 \times -0.0176][/tex]

                       = 26.376 J/K

Thus, we can conclude that the entropy increase of the Universe (in J/K) is 26.376 J/K.